Azure OpenAI
To use Azure OpenAI, you only need to set a few environment variables together with the OpenAI
class.
For example:
Environment Variables
export AZURE_OPENAI_KEY="<YOUR KEY HERE>"
export AZURE_OPENAI_ENDPOINT="<YOUR ENDPOINT, see https://learn.microsoft.com/en-us/azure/ai-services/openai/quickstart?tabs=command-line%2Cpython&pivots=rest-api>"
export AZURE_OPENAI_DEPLOYMENT="gpt-4" # or some other deployment name
Usage
import { OpenAI, serviceContextFromDefaults } from "llamaindex";
const azureOpenaiLLM = new OpenAI({ model: "gpt-4", temperature: 0 });
const serviceContext = serviceContextFromDefaults({ llm: azureOpenaiLLM });
Load and index documents
For this example, we will use a single document. In a real-world scenario, you would have multiple documents to index.
const document = new Document({ text: essay, id_: "essay" });
const index = await VectorStoreIndex.fromDocuments([document], {
serviceContext,
});
Query
const queryEngine = index.asQueryEngine();
const query = "What is the meaning of life?";
const results = await queryEngine.query({
query,
});
Full Example
import {
OpenAI,
Document,
VectorStoreIndex,
serviceContextFromDefaults,
} from "llamaindex";
async function main() {
// Create an instance of the LLM
const azureOpenaiLLM = new OpenAI({ model: "gpt-4", temperature: 0 });
// Create a service context
const serviceContext = serviceContextFromDefaults({ llm: azureOpenaiLLM });
const document = new Document({ text: essay, id_: "essay" });
// Load and index documents
const index = await VectorStoreIndex.fromDocuments([document], {
serviceContext,
});
// get retriever
const retriever = index.asRetriever();
// Create a query engine
const queryEngine = index.asQueryEngine({
retriever,
});
const query = "What is the meaning of life?";
// Query
const response = await queryEngine.query({
query,
});
// Log the response
console.log(response.response);
}